# Conceptual Question 25.01

#### Part A

If the electric field is zero everywhere inside a region of space, the potential must also be zero in that region.

ANSWER:



Since 
$$E_S = -\frac{dV}{dS}$$
, if  $E = 0$  then  $\frac{dV}{dS} = 0$  or  $V = const$ .

Conceptual Question 25.06

#### Part A

Suppose a region of space has a uniform electric field, directed towards the right, as shown in the figure. Which statement about the electric potential is true?

high of pot

#### ANSWER:

- $\bigcirc$  The potential at points A and B are equal, and the potential at point C is higher than the potential at point A.
- $\bigcirc$  The potential at all three locations (A,B,C) is the same because the field is uniform.
- $\bigcirc$  The potential at point A is the highest, the potential at point B is the second highest, and the potential at point C is the lowest.
- $\bigcirc$  The potential at points A and B are equal, and the potential at point C is lower than the potential at point A.

For sevies caps  $Q_1 = Q_2$ 

#### Conceptual Question 26.11

#### Part A

When two or more capacitors are connected in series across a potential difference

#### ANSWER:

- the potential difference across the combination is the algebraic sum of the potential differences across the individual capacitors.
- the equivalent capacitance of the combination is less than the capacitance of any of the capacitors
- o each capacitor carries the same amount of charge
- All of the above choices are correct.
- None of the above choices are correct.



Problem 26.09

#### Part A

The capacitors in the network shown in the figure all have a capacitance of 5.0 µF. What is the equivalent capacitance, Cab, of this capacitor network?

ANSWER:

- 20 µF
- 1.0 µF
- 3.0 dF
- 5.0 µF
- 10 uF

What is the equivalent capacitance, 
$$C_{ab}$$
, of this cap

 $Ceq2 = Ceq1 + Cq = \frac{C}{2} + C = \frac{3C}{2}$ 

$$\frac{1}{1+ Ce_q} Ce_q = \frac{1}{C_1} + \frac{1}{Ce_{q2}} = \frac{1}{C} + \frac{2}{3C} = \frac{5}{3C} Ce_q = \frac{3C}{5}$$

$$\frac{3C}{5} = \frac{3(5\mu F)}{5} = 3\mu F$$

### Conceptual Question 27.01

#### Part A

The figure shows a steady electric current passing through a wire with a narrow region. What happens to the drift velocity of the moving charges as they go from region B and then to region C?



ANSWER:

- The drift velocity remains constant.
- The drift velocity increases from A to B and decreases from B to C.
- The drift velocity increases all the time.
- The drift velocity decreases from A to B and increases from B to C.
- The drift velocity decreases all the time.

#### Problem 27.20

#### Part A

A 2.0 mm diameter wire of length 20 m has a resistance of 0.25  $\Omega$ . What is the resistivity of the wire? ANSWER:

- 0.25 Ω · m
- $\bigcirc$  4.0 × 10<sup>-7</sup>  $\Omega$  · m
- \_ 3.9 × 10<sup>-2</sup> Ω · m
- 16 × 10<sup>-3</sup> Ω ⋅ m
- $\bigcirc$  5.0 × 10<sup>-7</sup>  $\Omega \cdot m$

$$R = P \frac{L}{A} : P = \frac{A}{L}R = \frac{\pi(\frac{d}{2})^2}{L}R = 3.93 \times 10^{-8}$$

# Conceptual Question 28.03

### Part A

In the circuit shown in the figure, all the lightbulbs are identical. Which of the following is the correct ranking of the brightness of the bulbs?



Greatest current through A
A brightest

B of C equally bright

# ANSWER:

- $\bigcirc$  A is brightest, C is dimmest, and B is in between.
- $\bigcirc$  A and B have equal brightness, and C is the dimmest.
- $\bigcirc$   $ot\! A$  is the brightest, and B and C have equal brightness but less than A.
- $\bigcirc$  B and C have equal brightness, and A is the dimmest.
- All three bulbs have the same brightness.

# Part A

Four resistors are connected across an 8-V DC battery as shown in the figure. The current through the 9- $\Omega$  resistor is closest to



ANSWER:

O.5 A.

O 2 A.

0.7 A.

O 1A.

O.9 A.

by loop rule 8 V - 12 Iz = 0

 $I_2 = \frac{3V}{1242} = 0.67A$ current through 352 f 952 resistors
is 0.67A.

#### Problem 28.27

Part A



ANSWER:





$$f = \frac{1}{2}$$

$$\mathcal{E} - \mathbf{J}_0 R - \mathbf{J}(2R) = 0$$

$$\mathcal{E} - \frac{\mathcal{E}}{2} - \frac{\mathcal{E}}{2} = 0$$

Conceptual Question 26.16

Part A

O 24 V

An ideal parallel-plate capacitor consists of a set of two parallel plates of area A separated by a very small distance d. When the capacitor plates carry charges +Q and -Q, the capacitor stores energy U<sub>0</sub>. If the separation between the plates is doubled how much electrical energy is stored in the capacitor? ANSWER:

$$U_0$$
 $U_0$ 
 $U_{0/2}$ 
 $U_{0/4}$ 
 $4U_0$ 

$$M_0 = \frac{Q^2}{2C}$$

$$U_0 = \frac{Q^2 d}{2 \epsilon_0 A}$$

$$U_1 = \frac{Q^2(2d)}{250A}$$